

Chapter 32: Metabolic Alkalosis

32 Metabolic Alkalosis

Definition	382
Pathogenesis	382
Generation	382
Maintenance	383
Etiology	384
Clinical Features	385
Diagnosis	385
Confirm diagnosis	386

Establishing the etiological diagnosis	386
Identifying coexisting acid-base	
disorders	387
Management	387
Treatment of underlying cause	387
Saline responsive alkalosis	387
Saline resistant alkalosis	389

Metabolic alkalosis is the most common acid-base disorder, typically developing after hospitalization in critically ill patients, but it is not most frequently present upon admission, unlike metabolic acidosis [1, 2].

DEFINITION

Metabolic alkalosis is a primary acid-base disorder characterized by an increase in serum HCO_3 (>26 mEq/L), a high pH (>7.45), and a compensatory increase in $PaCO_2$ due to alveolar hypoventilation. Hypochloremia and hypokalemia are commonly encountered electrolyte imbalances in metabolic alkalosis.

Respiratory compensation: Hypoventilation, which occurs as a respiratory compensation in metabolic alkalosis, is a relatively slow process compared to the hyperventilation response that occurs in metabolic acidosis. Hypoventilation-induced hypoxia is a limiting factor for compensatory mechanisms in metabolic alkalosis because severe hypoxia (PO₂ <60 mm Hg) is a potent stimulus to increase alveolar ventilation, offsetting this protective respiratory response.

Comparison with chronic respiratory acidosis: Increased HCO_3 and increased $PaCO_2$ are also features of chronic respiratory acidosis, but the differentiating feature is a low pH.

PATHOGENESIS [3-5]

For a proper understanding of the pathogenesis of metabolic alkalosis, it is important to know the two distinct phases involved in sustaining metabolic alkalosis: 1. Generation of metabolic alkalosis and 2. Maintenance of metabolic alkalosis, as summarized in Table 32.1.

Generation of metabolic alkalosis

Mechanisms leading to the primary increase in plasma HCO_3 can involve one or more of the following:

 Gastrointestinal (GI) loss of hydrogen ion: Due to conditions like vomiting,

nasogastric suction, or congenital chloride-losing diarrhea.

- Renal loss of hydrogen ion: It includes the use of diuretics, primary hyperaldosteronism, Bartter syndrome, and Gitelman syndrome.
- Exogenous HCO₃ load: Due to the administration of HCO₃, balanced crystalloids containing buffers, blood products containing citrate as an anticoagulant, and the development of milk-alkali syndrome.

Want to read more?

Get Printed Version

Get Kindle Version

REFERENCES

- Webster NR, Kulkarni V. Metabolic alkalosis in the critically ill. Crit Rev Clin Lab Sci. 1999;36(5):497–510.
- Mæhle K, Haug B, Flaatten H, et al. Metabolic alkalosis is the most common acid-base disorder in ICU patients. Crit Care. 2014;18(2):420.
- Emmett M. Metabolic Alkalosis: A Brief Pathophysiologic Review. Clin J Am Soc Nephrol. 2020;15(12):1848–1856.
- Do C, Vasquez PC, Soleimani M. Metabolic Alkalosis Pathogenesis, Diagnosis, and Treatment: Core Curriculum 2022. Am J Kidney Dis. 2022;80(4):536–551.
- Krishnan N, Alpern RJ. Metabolic Alkalosis. Nephrology Self-Assessment Program. 2022;20(2):145–146.
- Galla JH. Metabolic alkalosis. J Am Soc Nephrol 2000;11(2):369–375.
- Khanna A, Kurtzman NA. Metabolic alkalosis. J Nephrol 2006;19 Suppl 9:S86–96.
- Gillion V, Jadoul M, Devuyst O, et al. The patient with metabolic alkalosis. Acta Clin Belg. 2019;74(1):34–40.
- 9. Tinawi M. Pathophysiology, Evaluation, and Management of Metabolic Alkalosis. Cureus. 2021;13(1):e12841.
- Eiro M, Katoh T, Watanabe T. Use of a proton-pump inhibitor for metabolic disturbances associated with anorexia nervosa. N Engl J Med. 2002;346(2):140.
- Kirsch BM, Sunder-Plassmann G, Schwarz C. Metabolic alkalosis in a hemodialysis patient--successful treatment with a proton pump inhibitor. Clin Nephrol 2006;66(5):391–4.
- 12. Mozell EJ, Cramer AJ, O'Dorisio TM, et al.

Long-term efficacy of octreotide in the treatment of Zollinger-Ellison syndrome. Arch Surg. 1992;127(9):1019–24.

- Guffey JD, Haas CE, Crowley A, et al. Hydrochloric Acid Infusion for the Treatment of Metabolic Alkalosis in Surgical Intensive Care Unit Patients. Ann Pharmacother. 2018;(6):522–526.
- Buchanan IB, Campbell BT, Peck MD, et al. Chest wall necrosis and death secondary to hydrochloric acid infusion for metabolic alkalosis. South Med J. 2005;98(8):822–824.
- Hydrochloric Acid (HCL). In: IV Dilutions Medication Reference and Infusion Guidelines. GlobalRxPh: The Clinician's Ultimate Reference. [Internet]. Available from: https://globalrph.com/dilution/hydrochloric-acid-hcl/.
- Achanti A, Szerlip HM. Acid-Base Disorders in the Critically III Patient. Clin J Am Soc Nephrol. 2023;18(1):102–112.
- Huber L, Gennari FJ. Severe metabolic alkalosis in a hemodialysis patient. Am J Kidney Dis 2011;58(1):144–149.
- Lisawat P, Gennari FJ. Approach to the hemodialysis patient with an abnormal serum bicarbonate concentration. Am J Kidney Dis 2014;64(1):151–5.
- Yi Y. Post-Hypercapnic Alkalosis: A Brief Review. Electrolyte Blood Press. 2023;21(1):18–23.
- Peixoto AJ, Alpern RJ. Treatment of severe metabolic alkalosis in a patient with congestive heart failure. Am J Kidney Dis. 2013;61(5):822–7.
- Ellison DH. Clinical pharmacology in diuretic use. Clin J Am Soc Nephrol. 2019;14(8):1248–1257.
- Enslow BT, Stockand JD, Berman JM. Liddle's syndrome mechanisms, diagnosis and management. Integr Blood Press Control. 2019;12:13–22.

