

Chapter 3:

Dextrose and Sodium Chloride Solutions

3

Dextrose and Sodium Chloride Solutions

5% Dextrose 2	2
Composition 2	22
Pharmacological basis 2	22
Indications 2	23
Contraindications2	24
Precautions2	24
Rate of administration2	24
Normal Saline 2	25
Composition 2	25
Pharmacological basis 2	25
Indications 2	25
Contraindications and precautions 2	26
Dextrose Saline 2	27

	Composition	27	
	Pharmacological basis	27	
	Indications	27	
	Precautions	27	
На	If Normal Saline	28	
	Composition	28	
	Pharmacological basis	28	
	Indications	28	
	Contraindications	29	
Half Normal Saline with Dextrose 29			
	Composition	29	
	Pharmacological basis	29	
	Indications	29	

Crystalloids are solutions in sterile water which contain varying concentrations of electrolytes and dextrose. Dextrose and sodium chloride containing crystalloid solutions are discussed (Summarized in Table 3.1).

5% DEXTROSE (D5W)

Composition

One liter of fluid contains:

Dextrose	50 gm			
Osmolality	252 mOsm/L			
Caloric value	170 kcal/L			
рН	4.3 (3.2 to 6.5)			
Each 100 ml contains: Hydrous Dextrose				
USP 5 gm				

Pharmacological basis

5% dextrose (usually abbreviated as D5W) provides free water with glucose without electrolytes. D5W is selected when there is a need for water but not electrolytes.

When a patient requires pure water, we administer intravenous 5% dextrose. Intravenous administration of free water is avoided due to its potential to cause hemolysis of red blood cells. However, the addition of dextrose renders the fluid near isotonic (252 mOsm/L) and does not result in hemolysis within the body.

5% dextrose packed in the bag is an isotonic solution, but once infused becomes a hypotonic solution in the body

To get a copy of the book, visit: www.fluidtherapy.org

as dextrose is consumed rapidly, and the

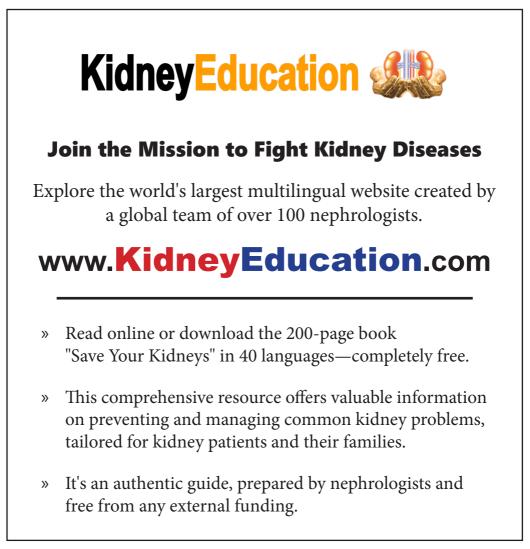
remaining plain water is hypotonic [1].

Want to read more?Get Printed VersionGet Kindle Version

REFERENCES

- Sweeney RM, McKendry RA, Bedi A. Perioperative intravenous fluid therapy for adults. Ulster Med J 2013;82(3):171–178.
- Asim M, M Alkadi MM, Asim H, et al. Dehydration and volume depletion: how to handle the misconceptions. World J Nephrol. 2019;8(1):23–32.
- Popescu M. Albumin therapy in critically ill patients. Cleveland clinic pharmacotherapy Update 2009; Volume XII, No. V.
- Zornow MH, Prough DS. Fluid management in patients with traumatic brain injury. New Horiz. 1995;3(3):488–98.
- Ali Z, Prabhakar H. Fluid management during neurosurgical procedures. J NeuroanaesthesiolCrit Care 2016;3:S35–S40.
- Jauch EC, Saver JL, Adams Jr HP, et al. Guidelines for the early management of patients with acute ischemicstroke: a guideline for healthcare professionals from the American HeartAssociation/American Stroke Association. Stroke. 2013;44(3):870–947.
- National Clinical Guideline Centre (UK). Intravenous fluid therapy: Intravenous fluid therapy in adults in hospital [Internet]. London: Royal College of Physicians (UK); 2013 Dec. (NICE Clinical Guidelines, No. 174.) 7, Intravenous Fluid Therapy for Fluid Resuscitation. Available from: https://www.ncbi.nlm. nih.gov/books/NBK333097/.
- Ryden SE, Oberman HA. Compatibility of common intravenous solutions with CPD blood. Transfusion. 1975;15(3):250–5.
- Gahart BL, Nazareno AR, Ortega M. Gahart's 2019 Intravenous Medications: A handbook for nurses and health professionals. 2019 35thEdition.
- Myburgh JA, Mythen MG. Resuscitation Fluids. N Engl J Med. 2013;369:1243–51.
- Yartsev A. Response to 1L of Hartmann's compound sodium lactate. Deranged physiology June 25, 2015 (https://derangedphysiology.com/main/core-topics-intensive-care/manipulation-fluids-and-electro-

lytes/Chapter%202.3.4/response-11-hartmanns-compound-sodium-lactate).


- 12. Semler MW, Rice TW. Saline is not the first choice for crystalloid resuscitation fluids. Crit Care Med. 2016;44(8):1541–4.
- Hoorn EJ. Intravenous fluids: balancing solutions. J Nephrol 2017;30:485–492.
- Lobo DN, Awad S. Should chloride-rich crystalloids remain the mainstay of fluid resuscitation to prevent "pre-renal" acute kidney injury? con. Kidney International. 2014;86(6):1096–1105.
- Li H, Sun SR, Yap JQ, et al. 0.9% saline is neither normal nor physiological. J Zhejiang Univ Sci B. 2016;17(3):181–187.
- Yunos NM, Bellomo R, Glassford N, et al. Chloride-liberal vs. Chloride-restrictive intravenous fluid administration and acute kidney injury: an extended analysis. Intensive Care Med 2015;41:257–64
- Nickson C. Chloride in critical illness. LITFL. reviewed and revised 21 March 2017 https://litfl. com/chloride-in-critical-illness/ Accessed on 12 May 2019.
- Rhodes A, Evans LE, Alhazzani W, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Crit Care Med 2017;45(3):486–552.
- Sahay M, Sahay R. Hyponatremia: A practical approach. Indian J Endocrinol Metab. 2014;18(6):760-771.
- Finfer S, Bellomo R, Boyce N, et al. A comparison of albumin and saline for fluid resuscitation in the intensive care unit. (SAFE Study) N Engl J Med 2004;350:2247–56.
- 21. Haddad SH, Arabi YM. Critical care management of severe traumatic brain injury in adults. scandinavian journal of trauma, resuscitation and emergency medicine. 2012;20:12.
- 22. Ertmer C, Van Aken H. Fluid therapy in patients with brain injury: what does physiology tell us? Crit Care. 2014;18(2):119.
- 23. Feld LG, Neuspiel DR, Foster BA, et al. Clinical

practice guideline: maintenance intravenous fluids in children. Pediatrics 2018;142(6):e20183083.

- 24. Wright C. Perioperative Intravenous Fluids prescription and monitoring in children 3 months to 16 years. NHSClinical Guideline. 2017.
- Andersen C, Afshari A. Impact of perioperative hyponatremia in children: a narrative review. World J Crit Care Med. 2014;3(4):95–101.
- Gosmanov AR, Gosmanova EO, Dillard-Cannon E. Management of adult diabetic ketoacidosis. diabetes, metabolic syndrome and obesity: targets and therapy. 2014;7:255–64.
- 27. Ding X, Cheng Z, Qian Q. Intravenous fluids and acute kidney injury. Blood Purif 2017;43:163–172.
- Khajavi MR, Etezadi F, Moharari RS, et al. Effects of normal saline vs. lactated ringer's during renal transplantation. Ren Fail. 2008;30(5):535–9.
- Farkas, J. Myth-busting: lactated ringers is safe in hyperkalemia, and is superior to NS. PulmCrit.org (EMCrit) 2014 (https://emcrit.org/pulmcrit/mythbusting-lactated-ringers-is-safe-in-hyperkalemiaand-is-superior-to-ns/).
- Weinberg L, Harris L, Bellomo R, et al. Effects of intraoperative and early postoperative normal saline or PlasmaLyte148® on hyperkalaemia in deceased donor renal transplantation: a double-blind randomized trial. Br J Anaesth. 2017;119(4):606–615.
- McGuire LC, Cruickshank AM, Munro PT. Alcoholic ketoacidosis. Emerg Med J. 2006;23(6):417–20.
- Bowden SA, Henry R. Pediatricadrenal insufficiency: diagnosis, management, and new therapies. International Journal of Pediatrics Volume 2018;110(20):1504–1516.

- Sterns RH, Emmett M, Forman JP. Maintenance and replacement fluid therapy in adults. UptoDate (accessed 19.05.2019).
- Reynolds RM, Padfield PL, Seckl JR. Disorders of sodium balance. BMJ. 2006;332:702.
- Anigilaje EA. Management of diarrhoeal dehydration in childhood: a review for clinicians in developing countries. Frontiers in Pediatrics 2018;6:28.
- Kitabchi AE, Umpierrez GE, Miles JM, et al. Hyperglycemic crises in adult patients with diabetes. Diabetes Care. 2009;32(7):1335–43.
- Basnet S, Venepalli PK, Andoh J, et al. Effect of normal saline and half normal saline on serum electrolytes during recovery phase of diabetic ketoacidosis. J Intensive Care Med. 2014;29(1):38–42.
- Goguen J, Gilbert J. Hyperglycemicemergencies in adults. 2018 clinical practice guidelines. Diabetes Canada clinical practice guidelines expert committee. Can J Diabetes 2018;42:S109–S114.
- Jivan D. Management of diabetic ketoacidosis, Journal of Endocrinology, Metabolism and Diabetes of South Africa 2011;16(1):10–14.
- Perilli G, Saraceni C, Daniels MN, et al. Diabetic ketoacidosis: a review and update. CurrEmerg Hosp Med Rep 2013;1:10–17.
- Hirsh I, Emmett M, Nathan DM, et al. Diabetic ketoacidosis and hyperosmolar hyperglycaemic state in adults: treatment. UptoDate (accessed 19.05.2019).
- Kitabchi A, Wall BM. Management of diabetic ketoacidosis. Am Fam Physician. 1999;60(2):455–464.
- Siparsky N, Cochran A, Sterns RH. Overview of postoperative fluid therapy in adults. UptoDate (accessed 19.05.2019).

