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Detection of fluid responsiveness is 
essential as it helps clinicians for the 
proper fluid management in critically 
ill patients. Various techniques are 
available to assess fluid responsiveness 
in hemodynamically unstable patients, 
including pulse pressure variation (PPV) 
and stroke volume variation (SVV), which 
are common dynamic measurements 
based on cardiopulmonary interaction 
derived from arterial waveform analysis.

Additionally, the plethysmographic 
variability index (PVI) is a simple, easily 
doable, noninvasive, and dynamic method 
that accurately predicts fluid responsive-
ness in mechanically ventilated patients 
by continuously and automatically esti-
mating respiratory variations in the pulse 
oximeter waveform.

PROVOCATIVE 
TECHNIQUES TO DETECT 
FLUID RESPONSIVENESS
Why is it important to differentiate 
between fluid responsive from fluid 
nonresponsive patients by hemodynamic 
monitoring?

In hemodynamical ly unstable 
patients, prompt and adequate fluid 
administration is essential to increase 
blood volume, which increases venous 
return, cardiac output (CO), and organ 
perfusion. Assessment of volume respon-
siveness is vital in such patients because 
with fluid boluses, only 50% of patients 
with shock are benefited, and excess 
fluid may worsen patient outcomes 
[1, 2].

In which patients fluid responsiveness 
should be tested?

Patients do not require a test for fluid 
responsiveness if hypovolemia is evident 
on clinical examination. Avoid fluid 
challenge if volume overload is obvious 
clinically. Fluid responsiveness should 
be tested in hemodynamically unstable 
patients if fluid losses are not apparent.

Which dynamic methods are used to 
detect fluid responsiveness?

The use of dynamic variables is preferred 
over static variables to predict fluid 
responsiveness [3]. The fluid challenge, 
passive leg raising, and end-expiratory 
occlusion test are reliable provocative, 
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dynamic methods used for the assess-
ment of fluid status, which detects or 
unmasks the fluid responsive state (Table 
18.1). For the assessment of fluid respon-
siveness, parameters such as pulse 
pressure variation, stroke volume vari-
ation, Plethysmograph variability index, 
and cardiac output are measured with 
commercially available various devices 
and monitors.

A. Fluid challenge
In the fluid challenge, a small amount 
of fluid is administered quickly, and the 
left ventricle’s ability to increase stroke 
volume (SV) is assessed precisely [4, 5].

Fluid challenge (FC) is an effective 
diagnostic intervention designed to 
identify the “fluid responsiveness” in 
hemodynamic compromise patients. 
The fluid challenge guides clinicians to 
administer the optimum volume of fluid to 

avoid over and under-fluid resuscitation 
[6]. The fluid challenge is usually 
performed in patients with hypotension 
and oliguria [7].

Balanced crystalloid solutions are 
usually preferred for the fluid challenge 
because the selection of the type of 
fluid does not affect the proportion of 
fluid responders [8]. Usually, 500 mL 
crystalloid is administered over 20–30 
minutes (or 200–250 mL is administered 
over 5–10 minutes) [2, 7].

How to assess the response to the fluid 
challenge?

The “fluid responsiveness” cannot be 
predicted by heart rate, blood pressure 
measurements, clinical signs, or static 
hemodynamic parameters such as central 
venous pressure (CVP) or pulmonary 
artery occlusion pressure (PAOP) [9, 10].

The current recommendation is to 
monitor dynamic over static hemodynamic 

Table 18.1 Summary of provocative dynamic methods 
to detect fluid responsiveness

Method Fluid challenge Passive leg raising End-expiratory 
occlusion test

Nature Non-invasive Non-invasive Invasive

Ventilation mode Spontaneous Spontaneous Mechanical

Technique Intravenous fluid 
loading Internal volume challenge Internal volume 

challenge

Effect of maneuver Non-reversible Reversible Reversible

Parameters assessed Cardiac output Cardiac output Cardiac output

Threshold 15% standard FC 
6% mini FC 10% 5%

Methods to measure 
CO

Needs a very precise 
technique

Direct continuous 
measurement of CO

Direct continuous 
measurement of CO

PCA, echocardiography PCA, echocardiography, or 
bioreactance

PCA, 
echocardiography

Limitations/Exclusion 
criteria

Risk of volume 
overload

High intra-abdominal 
pressures, head trauma, 

and movement of the legs 
are not compatible

Non-intubated 
patients, 15 second 

respiration hold is not 
possible

ARDS: Acute respiratory distress syndrome; CO: Cardiac output; FC: Fluid challenge; PCA: Pulse contour 
analysis
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parameters after fluid challenge to 
predict the “fluid responsiveness” in 
mechanically ventilated patients [3, 
10]. Even in spontaneously breathing 
patients, respiratory changes in dynamic 
parameters after fluid challenge predicts 
“fluid responsiveness” [11].

Cardiac output monitoring is used to 
assess pulse pressure variation, stroke 
volume, stroke volume variation, and 
cardiac index. Precise monitoring of 
these parameters is essential because the 
maximal effect on cardiac output occurs 
approximately one minute after the fluid 
challenge is over [12].

Which criteria define fluid responsive-
ness in the fluid challenge?

Usual parameters suggestive of fluid 
responsiveness are 10–15% increase 
in stroke volume [4] with a ≥15% 
increase in cardiac index [7]. Only fluid 
responsiveness patients should receive 
additional fluids [13].

Why is large volume fluid administration 
avoided for the fluid challenge?

The standard challenge with 300–500 
mL of fluid is more a treatment than 
a test and, when repeated, carries the 
potential risk of volume overload. Volume 
overload is deleterious and probably more 
harmful than hypovolemia [14]. Potential 
harms of large volume fluid bolus are 
hypervolemia, pulmonary edema, bowel 
wall edema, endothelial glycocalyx 
damage, increased vascular permeability, 
tissue hypoxia, and organ dysfunctions 
[15, 16].

Positive fluid balance also increases 
the risk of acute kidney injury, slower 
recovery in acute respiratory distress 
syndrome, and higher mortality [17–21].

After large volume fluid bolus, clinical 
and physiological improvement occurs 
initially, but no long-term improvement, 
and on the contrary, causes higher 
mortality due to delayed cardiovascular 
collapse [22–24].

Why hemodynamics improvement 
following fluid bolus is short-lived?

Short-lived hemodynamics improvement 
following fluid bolus is because of rapid 
“Third” Spacing. In critical patients with 
leaky capillaries, 95% of the infused 
fluid shifts to interstitial space within 
90 minutes, so transient benefit is lost 
rapidly [21, 25].

What is a mini-fluid challenge?

A mini-fluid challenge is an alternative 
approach that can reliably predict fluid 
responsiveness without a large amount 
of fluid infusion and the potential risk of 
fluid overload [26–29].

Protocols in the mini-fluid challenge 
includes:

• 100 ml of the crystalloid bolus is 
infused rapidly over one minute [26].

• A fluid bolus of 4 mL/kg of a balanced 
crystalloid solution is quickly infused 
over 5 minutes [30].

Fluid responsiveness in the mini-
fluid challenge can be reliably predicted 
by velocity-time integral (VTI) measured 
by transthoracic echocardiography 
[29], pulse contour analysis derived 
from cardiac output [26], or changes 
in SVV [31]. As a small volume of fluid 
administration causes small and short-
lived hemodynamic changes, response 
assessment should be monitored by very 
sensitive and precise techniques [26].

B. Passive leg raising test
The passive leg raising (PLR) test is a 
simple, safe, reliable non-invasive, and 
reproducible bedside test to evaluate 
fluid responsiveness in patients with 
spontaneous breathing, on a ventilator, 
low lung compliance, and even in the 
presence of cardiac arrhythmias [32–36]. 
Three metanalyses have confirmed the 
role of the PLR test in the assessment of 
fluid responsiveness [33, 37, 38].
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In the PLR test, about 300 mL of 
blood from the lower extremities’ veins 
is transferred into the thorax, which 
increases cardiac output [39]. The 
temporary gravitational shift of venous 
blood into the central circulation mimics 
a fluid challenge. Prediction of fluid 
responsiveness without administering 
a single drop of fluid avoids the risks 
of fluid overload. Rapidly reversible 
hemodynamic effects and no need for 
mechanical ventilation or sedation are 
the advantages of this test.

How to perform the passive leg 
raising test?
The basic method to perform the PLR test 
is [40]:

• Start the test by placing the patient 
45 degrees head-up semi-recumbent 
(and not supine position) for 3 
minutes and obtain the baseline 
hemodynamic values.

• The next step is to lower the patient’s 
upper body and head to the horizontal 
position and passively raise legs at 45 
degrees by changing the bed position 
(i.e., not manually) and holding in this 
position for one minute. Immediately 
assess the effects of PLR by obtaining 
the hemodynamic values again.

• As hemodynamic effects of the PLR 
test are short-term and transient, 
obtain the subsequent hemodynamic 
values fast within the first 90 seconds 
following leg elevation.

Assessment of the effect of the 
PLR test and its clinical utility
• To assess the hemodynamic effect of 

the PLR test, techniques which directly 
measure cardiac output should 
be used rather than methods that 
measure arterial pressure or pulse 
pressure [40]. Direct measurement 
of cardiac output is the more reliable 

hemodynamic parameter to assess 
the effects of the PLR test [37].

• Positive PLR test is defined as a 10% 
or more increase in cardiac output/
stroke volume or pulse pressure, and 
it predicts fluid responsiveness [38, 
41]. If, in response to the PLR test, 
an increase in cardiac output is less, 
it predicts a poor response to fluid 
administration.

• The most frequently used measure-
ment/monitoring techniques for the 
direct measurement of cardiac output 
in the PLR test are arterial pulse 
contour analysis, transthoracic echo-
cardiography, esophageal doppler, 
bioreactance, and contour analysis 
of the volume clamp-derived arte-
rial pressure. In the PLR test, simple 
measurement and monitoring of 
systolic blood pressure by the oscil-
lometric non-invasive method is not a 
sensitive or specific predictor of fluid 
responsiveness [42].

• During renal replacement therapy, 
a positive PLR test predicts subse-
quent hypotension even before fluid 
removal [43].

• As a positive PLR test predicts fluid 
responsiveness, a negative PLR test 
provides an important clinical clue 
to discontinue or stop fluid adminis-
tration [40]. The negative PLR test 
helps the clinician to avoid fluid over-
load and guides them to select other 
measures like vasopressors rather 
than fluid administration in hemody-
namically unstable patients.

• PLR test is not useful in patients 
with raised intra-abdominal pressure 
(may cause false-negative result), 
not feasible intraoperatively during 
anesthesia or in agitated patients, 
avoided in neurotrauma patients 
(may increase intracranial pressure), 
and in those requiring immobilization 
(traumatic hip or lower limb fractures) 
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or using compression stocking [32, 
44–46].

C. End-expiratory occlusion 
test
The end-expiratory occlusion (EEO) test 
is a simple test in patients undergoing 
mechanical ventilation, which predicts 
fluid responsiveness reliably in the 
operating room and ICU [27, 47, 48].

In this preload responsiveness test, 
a ventilator is interrupted for 15 seconds 
at the end of expiration, and cardiac 
output is measured. A more than 5% 
increase in cardiac output predicts fluid 
responsiveness with a high degree of 
accuracy [9, 49]. The standard method 
used to measure cardiac output in this 
test is pulse contour analysis, but recent 
evidence supports the use of even 
echocardiography [48, 50, 51].
Physiological basis [52, 53]:
• In patients on positive pressure venti-

lation, during inspiration, intrathoracic 
pressure increases, which pushes 
blood back from the right atrium and 
reduces the systemic venous return.

• In patients on a ventilator, during 
the expiratory phase, intrathoracic 
pressure reduces, which allows the 
return of systemic venous blood. 
When a ventilator is stopped for 15 
seconds at the end-expiration, the 
reduced intrathoracic pressure will 
persist for additional 15 seconds, 
permit venous return for a more 
extended period, and allow a larger 
volume of venous blood return.

• The effect of increased venous return 
will be like a mini self-volume fluid 
challenge, a transient increase in the 
venous blood return with a resultant 
increase in the left ventricular stroke 
volume and cardiac output.

• With the EEO test, cardiac output will 
increase in fluid responsive patients 
while no significant increase in cardiac 

output in non-volume responders.
• When a 15-second end-inspiratory 

hold is added to hold in the end-ex-
piratory phase, the combined effect 
induces more substantial cardiac 
output changes in fluid responders, 
increasing the diagnostic threshold of 
this test to 13% and the assessment 
possible by echocardiography exam-
ination [50].
Reliability, even in patients with 

cardiac arrhythmias, acute respiratory 
distress syndrome, low lung compliance, 
and low tidal volume, are the advantages 
of this easy-to-use test [9, 53–55]. But 
this test can be performed only in patients 
on a ventilator who can hold respiration 
for 15 seconds without interruption by a 
spontaneous breath.

EEO test is a preferred technique to 
measure CO in surgical patients in the 
operating theatre. It can be conveniently 
and safely performed in sedated patients 
on a ventilator and with the benefit of the 
assessment without fluid administration 
(i.e., risk of volume overload). In addi-
tion, it has no technical constraints like a 
passive leg raising test [27, 56].

DYNAMIC PARAMETERS 
TO PREDICT FLUID 
RESPONSIVENESS
Pulse pressure variation, stroke volume 
variation, and plethysmographic vari-
ability index are common dynamic 
measurements based on cardiopulmo-
nary interaction derived from the arterial 
waveform analysis, which is used to 
predict fluid responsiveness.

Pulse pressure variation (PPV) 
and stroke volume variation 
(SVV)
Arterial waveform derived dynamic 
parameters such as pulse pressure 
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variation and stroke volume variation 
are accurate and excellent predictors 
of fluid responsiveness in mechanically 
ventilated patients [57–60]. Dynamic 
parameters PPV and SVV are superior 
to traditionally used static indices to 
predict fluid responsiveness, such as 
central venous pressure and pulmonary 
artery occlusion pressure [57, 61–64].

PPV, SVV, and cardiac output can 
be easily recorded and automatically 
calculated by many modern commercially 
available bedside monitors.

A. Pulse pressure variation
Pulse pressure is the difference between 
systolic and diastolic blood pressure, 
which varies with respiration. Pulse 
pressure variation is calculated from 
the maximum pulse pressure (PPmax), 
minimum PP (PPmin), and mean PP 
(PPmean) during a respiratory cycle. 
These values can be obtained accurately 
by arterial catheters, and for the calcu-
lation, the values from three or more 
breaths are measured and averaged.

Interpretation of PPV for fluid adminis-
tration:

1. PPV >13% is strongly associated with 
volume responsiveness [57, 58].

2. If PPV is low (<9), it suggests fluid 
unresponsiveness, and administration 
of fluids should be avoided [60].

3. PPV 9–13% is a grey zone value, 
and a definite strategy to administer 
intravenous (IV) fluid cannot be made 
on its basis [65, 66].

PPV has a higher predictive value 
for fluid responsiveness compared to 
SVV [67, 68]. Values of PPV are reliable, 
provided the patient is intubated and is 
on a volume cycled ventilator making 

no spontaneous respiratory efforts, 
tidal value >8 mL/kg body weight, and 
no arrhythmias [69, 70]. However, the 
accuracy of PPV in patients with increased 
intra-abdominal pressure is questionable 
as there is evidence supporting [71, 72] 
and against [73] its reliability.
Role of PPV to guide and monitor fluid 
administration in clinical practice [60]:
1. Surgical patients: Its applicability 

is higher during major surgery 
because PPV improves postopera-
tive outcomes, and in patients on 
mechanical ventilator accuracy of PPV 
is greater.

2. ICU patients: Use of PPV is lesser 
in ICU because in the presence of 
commonly encountered conditions 
in ICU such as cardiac arrhythmias, 
spontaneous breathing, ventilatory 
support with low tidal volume, low 
lung compliance (e.g., acute respi-
ratory distress syndrome), etc., the 
predictive value of PPV is unreliable.

3. Interpretation in low tidal volume 
ventilation: In patients on low tidal 
volume ventilation, PPV value can be 
misleading as it can be low even in 
fluid responsiveness patients. The 
'tidal volume challenge' is a simple 
bedside test that helps to over-
come the difficulty in interpretation 
in such patients. In this technique, 
tidal volume is increased from 6 to 
8 mL/kg for 1 minute, and the resul-
tant absolute changes in PPV are 
measured [69, 74]. If an increase in 
the absolute value of PPV is 3.5% or 
more, it predicts fluid responsiveness 
with excellent accuracy [74].

4. Interpretation in grey zone values 
of PPV: In patients with PPV 9% 
and 13% and tidal volume ≥8 mL/
kg, PVV is inconclusive in predicting 
fluid responsiveness [65]. In such 
patients, augmented PPV (i.e., tran-
sient increase in tidal volume from 
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8 mL/kg to 12 mL/kg, known as a 
tidal volume challenge technique) can 
offer excellent predictability of fluid 
responsiveness [75].

B. Stroke volume variation
Left ventricular stroke volume variation, 
like PPV, is a dynamic parameter useful 
in diagnosing volume deficit and is a 
reliable predictor of fluid responsiveness 
in mechanically ventilated patients. 
Stroke volume variation is the percentage 
change between the maximal and 
minimal stroke volumes (SV) averaged 
over several respiratory cycles.

SVV greater than 10% is associated 
with fluid responsiveness [76, 77]. The 
SVV is commonly measured by an arte-
rial catheter but can also be measured 
by other methods such as esophageal 
doppler, bioimpedance, and bioreactance.

PPV and SVV are unreliable in 
patients with spontaneous breathing, 
on a mechanical ventilator with low tidal 
volume (<8 mL/kg), cardiac arrhythmias, 
right ventricular dysfunction, and low 
lung compliance [78–80].

C. Plethysmographic 
variability index
The plethysmographic variability index 
(PVI, Pleth variability index) is a simple, 
completely noninvasive, and dynamic 
method that accurately predicts fluid 
responsiveness in mechanically ventilated 
patients [81–83].

In this easy-to-use method, the pulse 
oximeter measures the light transmitted 
through the vascular bed of a finger 
and detects the dynamic change in 
the perfusion index during a complete 
respiratory cycle [84].

Continuous measurement derived 
from the plethysmographic waveform 
signals of the pulse oximetry is automat-
ically calculated and displayed on the 
monitor’s screen [85].

The PVI is calculated from the 
perfusion index (PI) variation between 
inspiration and expiration phases, as 
follows:

Generally, a PVI value >14% predicts 
preload dependence and is suggestive of 
fluid responsiveness [81, 86, 87].

PVI is a reasonably reliable predictor 
of fluid responsiveness in perioperative 
and critically ill patients with mechanical 
ventilation [88–92]. PVI guided goal-
directed fluid management has been 
shown to improve outcomes in major 
surgery [93, 94]. However, in a recent 
meta-analysis, the reliability of PVI to 
predict fluid responsiveness was found 
to be limited, but it can play a role as a 
continuous bedside monitor in ICU [95].

Results of PVI are less reliable in 
pediatric patients with spontaneously 
breathing, with cardiac arrhythmias 
[88], probe malposition, patient motion, 
and in patients receiving norepinephrine 
(due to vasopressor induced dampened 
plethysmographic signals) [96, 97].
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