

Chapter 10:

Calcium Gluconate, Calcium Chloride, and Hypertonic Dextrose Solutions

To get a copy of the book, visit: www.fluidtherapy.org

10 Calcium Gluconate, Calcium Chloride, and Hypertonic Dextrose Solutions

CALCIUM GLUCONATE AND CALCIUM CHLORIDE 116 Composition 116 Pharmacological basis 116 Indications 116 Hyperkalemia 116 Hypocalcemia 117 Severe hypermagnesemia 117 Calcium-channel blocker 118 β-blocker overdose 118 Prevent citrate toxicity 118

Contraindications and precautions11	9
Cardiac resuscitation11	9
Hydrofluoric acid burns11	9

HYPERTONIC DEXTROSE

SOLUTIONS	120
Composition	120
Pharmacological basis	120
Indications	120
Contraindications	120
Adverse effects and cautions	120

Commonly used special solutions are calcium chloride, calcium gluconate, dextrose 25% and 50%, hypertonic

saline, magnesium sulfate, potassium chloride, potassium phosphate, and sodium bicarbonate (Table 10.1).

Table 10.1 Composition of commonly used special solutions						
Injection	Content in mEq/ml	Volume of amp (mL)	Content in mEq/amp	gm/10 ml amp		
Calcium gluconate 10%	$Ca^{2+} = 0.45$	10	Ca ²⁺ = 4.5/10 ml	1.0		
Calcium chloride 10%	$Ca^{2+} = 1.36$	10	Ca ²⁺ = 13.6/10 ml	1.0		
Hypertonic (3%) saline	Na ⁺ = 0.5	100	Na+ = 51/100 ml	3.0		
Magnesium sulfate 50%	$Mg^{2+} = 4$	2.0	Mg ²⁺ = 8/2 ml	1.0		
Potassium chloride 15%	K ⁺ = 2.0	10	K ⁺ = 20/10 ml	1.5		
Potassium phosphates	$K^+ = 4.4$ $PH_4 = 3.0$	15	K+ = 66/15 ml PH ₄ = 45/15 ml	-		
7.5% NaHCO ₃	$HCO_{3} = 0.9$	10	HCO ₃ = 9/10 ml	0.75		
8.4% NaHCO ₃	$HCO_{3} = 1.0$	20	HCO ₃ = 10/10 ml	0.84		
HCO ₃ : Bicarbonate; Ca ²⁺ : Calcium; Mg ²⁺ : Magnesium; PH ₄ : Phosphate; K ⁺ : Potassium; Na ⁺ : Sodium; NaHCO ₃ : Sodium bicarbonate						

To get a copy of the book, visit: www.fluidtherapy.org

INJECTION CALCIUM GLUCONATE AND CALCIUM CHLORIDE

ride are two different salt forms commonly used in various emergency conditions.

Inj. calcium gluconate and calcium chlo-

Want to read more?

Get Printed Version

Get Kindle Version

REFERENCES

- Davey M, Caldicott D. Calcium salts in management of hyperkalaemia. Emerg Med J. 2002;19(1):92–3.
- Long B, Warix JR, Koyfman A. Controversies in Management of Hyperkalemia. J Emerg Med. 2018;55(2):192–205.
- 3. Semple P, Booth C. Calcium chloride; a reminder. Anaesthesia 1996;51(1):93.
- 4. Weisberg LS. Management of severe hyperkalemia. Crit Care Med 2008;36(12):3246–51.
- Truhlar A, Deakin CD, Soar J, et al., European resuscitation council guidelines for resuscitation 2015: Section 4. Cardiac arrest in special circumstances. Resuscitation, 2015;95:148–201.
- Batterink J, Cessford TA, Taylor RAI. Pharmacological interventions for the acute management of hyperkalaemia in adults. Cochrane Database of Systematic Reviews 2015;10:CD010344.
- 7. Robert T, Joseph A, Mesnard L. Calcium salt during hyperkalemia. Kidney Int. 2016;90(2):451–452.
- Wang CH, Huang CH, Chang WT, et al. The effects of calcium and sodium bicarbonate on severe hyperkalaemia during cardiopulmonary resuscitation: A retrospective cohort study of adult in-hospital cardiac arrest. Resuscitation,2016;98:105–11.
- 9. Vanden Hoek TL, Morrison LJ, Shuster M, et al. Part 12: cardiac arrest in special situations: 2010 American heart association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2010;122:S829–S861.
- Helman A, Baimel M, Etchells E. Emergency management of hyperkalemia. Emergency Medicine Cases. 2016 https://emergencymedicinecases.com/ emergency-management-hyperkalemia/Accessed 11 June 2020.

- Ahee P, Crowe AV. The management of hyperkalaemia in the emergency department. J Accid Emerg Med. 2000;17(3):188–191.
- Cooper MS, Gittoes NJL. Diagnosis and management of hypocalcaemia. BMJ 2008;336(7656):1298–1302.
- Walsh J, Gittoes N, Selby P. Society for Endocrinology Endocrine Emergency Guidance: Emergency management of acute hypocalcemia in adult patients. Endocr Connect. 2016;5(5):G9–G11.
- Rietjens SJ, de Lange DW, Donker DW, et al. Practical recommendations for calcium channel antagonist poisoning. Neth J Med 2016;74(2):60–67.
- Graudins A, Lee H, Druda D. Calcium channel antagonist and beta-blocker overdose: Antidotes and adjunct therapies. Br J Clin Pharmacol 2016;81(3):453–461.
- St-Onge M, Anseeuw K, Cantrell FL, et al. Experts consensus recommendations for the management of calcium channel blockerpoisoning in adults. Crit Care Med. 2017;45(3):e306–e315.
- 17. Kumar K, Biyyam M, Bajantri B, et al. Critical management of severe hypotension caused by amlodipine toxicity managed with hyperinsulinemia/ euglycemia therapy supplemented with calcium gluconate, intravenous glucagon and other vasopressor support: Review of literature. Cardiol Res 2018;9(1):46–49.
- Shah SK, Goswami SK, Babu RV, et al. Management of calcium channel antagonist overdose with hyperinsulinemia-euglycemia therapy: case series and review of the literature. Case Rep Crit Care. 2012;2012:927040.
- Lima SK, Begum M, Gupta AK, et al. Management of Massive Blood Transfusion-a case study. Pulse 2014;5(1):39–43.

- Hess JR, Silvergleid AJ. Massive blood transfusion. In: Post TW, editor. UpToDate. Waltham, MA: Wolters Kluwer Health. http://www.uptodate.com. Accessed 12 Sept 2020.
- Basic-Jukic N, Kes P, Glavas-Boras S, et al. Complications of therapeutic plasma exchange: experience with 4857 treatments. Ther Apher Dial. 2005;9(5):391–5.
- 22. Lee G, Arepally GM. Anticoagulation techniques in apheresis: from heparin to citrate and beyond. J Clin Apher. 2012;27(3):117–125.
- Sigler K, Lee J, Srivaths P. Regional citrate anticoagulation with calcium replacement in pediatric apheresis. J Clin Apher. 2018;33(3):274–7.
- 24. Szczepiorkowski ZM, Winters JL, Bandarenko N, et al. Guidelines on the use of therapeutic apheresis in clinical practice--evidence-based approach from the Apheresis Applications Committee of the American Society for Apheresis. J Clin Apher. 2010;25(3):83–177
- Patterson ER, Winters JL. Hemapheresis. In: McPherson RA, Pincus MR, eds. Henry's Clinical Diagnosis and Management by Laboratory Methods E-Book. (23rd ed., pp. 779) St Louis, MO: Elsevier;2017.
- Weinstein R. Prevention of citrate reactions during therapeutic plasma exchange by constant infusion of calcium gluconate with the return fluid. J Clin Apher. 1996;11(4):204–210.
- Kankirawatana S, Huang ST, Marques MB. Continuous infusion of calcium gluconate in 5% albumin is safe and prevents most hypocalcemic reactions during therapeutic plasma exchange. J Clin Apher. 2007;22(5):265–269.
- Krishnan RG, Coulthard MG. Minimising changes in plasma calcium and magnesium concentrations during plasmapheresis. Pediatr Nephroly 2007;22(10):1763–1766.
- Section 5: Dialysis Interventions for Treatment of AKI. Kidney Int Suppl (2011). 2012;2(1):89–115.
- Oudemans-van Straaten HM, Ostermann M. Benchto-bedside review: Citrate for continuous renal replacement therapy, from science to practice. Crit Care 2012;16(6):249.
- Kindgen-Milles D, Brandenburger T, Dimski T. Regional citrate anticoagulation for continuous renal replacement therapy. Curr Opin Crit Care. 2018;24(6):450–4.
- 32. Karkar A, Ronco C. Prescription of CRRT: a pathway to optimize therapy. Ann. Intensive Care 2020;10(1):32.

- 33. Wu MY, Hsu YH, Bai CH, et al. Regional citrate versus heparin anticoagulation for continuous renal replacement therapy: A metaanalysis of randomized controlled trials. Am J Kidney Dis 2012;59(6):810–818.
- 34. Stucker F, Ponte B, Tataw J, et al. Efficacy and safety of citrate-based anticoagulation compared to heparin in patients with acute kidney injury requiring continuous renal replacement therapy: a randomized controlled trial. Crit Care 2015;19(1):91.
- 35. Liu C, Mao Z, Kang H, et al. Regional citrate versus heparin anticoagulation for continuous renal replacement therapy in critically ill patients: a metaanalysis with trial sequential analysis of randomized controlled trials. Crit Care. 2016;20(1):144.
- Davenport A, Tolwani A. Citrate anticoagulation for continuous renal replacement therapy (CRRT) in patients with acute kidney injury admitted to the intensive care unit. NDT Plus. 2009;2(6):439–447.
- 37. Morabito S, Pistolesi V, Tritapepe L, et al. Regional citrate anticoagulation in cardiac surgery patients at high risk of bleeding: a continuous veno-venous hemofiltration protocol with a low concentration citrate solution. Crit Care. 2012;16(3):R111.
- McKee D, Thoma A, Bailey K, et al. A review of hydrofluoric acid burn management. Plast Surg (Oakv). 2014;22(2):95–98.
- 39. Guidelines 2000 for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Part 6: advanced cardiovascular life support: section 6: pharmacology II: agents to optimize cardiac output and blood pressure. The American Heart Association in collaboration with the International Liaison Committee on Resuscitation. Circulation. 2000;102(8 Suppl):I129–135.
- Australian Resuscitation Council. Section 11 Adult advanced life support. ANZCOR Guideline 11.5 – Medications in Adult Cardiac Arrest August 2016 Available: https://resus.org.au/guidelines/.
- Morrison LJ, Deakin CD, Morley PT, et al. Part 8: Advanced life support: 2010 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. Circulation. 2010;122(16 Suppl 2):S345–421.
- 42. Gin A, Walker S. Notice to Hospitals regarding Ceftriaxone-calcium incompatibility: What's a clinician to do? Can J Hosp Pharm. 2009;62(2):157–8.

